Philosophy of Language: Wittgenstein Fall 2003 Prof. Boedeker

Suggested topics for the final paper

Please write on one of the following topics. If you would like to write on a topic of your own choosing, please discuss it with me beforehand.

1. How does G.E. Moore propose to defend common sense by proving the existence of the external world? What does Wittgenstein in On Certainty find “interesting” (#137) about Moore’s proof? What does he find illegitimate in it, and why? In what way does Wittgenstein propose to “dissolve” the debate between skeptical idealism and realism? In particular, what assumption(s) common to both idealism and realism does Wittgenstein question, and what are his reasons for doing so? Do you find his attempt successful? Explain.

2. In the Tractatus, Wittgenstein distinguishes between propositions and nonsensical (unsinnig) pseudo-propositions. Propositions, in turn, either have sense (sind sinnvoll) or lack sense (sind sinnlos). It is legitimate for someone to say that s/he knows only propositions with sense (4.461, 5.1362). In On Certainty, something remains of at least the latter distinction in the distinction between empirical hypotheses, and so-called “frame” propositions that hold fast for me. Explain the similarities and the differences between his earlier and later views. Be sure to discuss the way in which Wittgenstein’s later distinction involves a broadened conception of language compared to that of the Tractatus.

3. In addition to the attempt to “dissolve” the debate between skeptical idealism and realism, Wittgenstein also attempts what would appear to be two more head-on attacks on skeptical idealism. The first can be summed up in the slogan “Doubt presupposes certainty”; and the second rests on the claim that the unshakeable belief in the truth of certain propositions (such as “Here is one hand”) is necessary for someone to count as understanding the meaning of words (such as “hand”). Sketch out one of these attacks. How might the (Cartesian) skeptic reply to this attack? Who do you think has the stronger position? Explain.

4. In the Tractatus, Wittgenstein claims that the tautologies of logic mirror logical form. In On Certainty, he claims that the “frame” propositions that hold fast for me express a form of life, or communal ways of acting. Explain what he means by these claims. What does Wittgenstein in the Tractatus mean by “language”? What corresponding broadening of the view of language takes place in On Certainty? Does his later view of frame propositions negate his earlier view of tautologies? Explain.

[By the way, here are a couple of typographical or translation errors from On Certainty:

Section 10: “it is only in use that the proposition has its sense” should read “it is only in use that the proposition has sense”.

Section 196: “accept as sure” should read “accept as unconditionally sure”.

Section 238: “…my fundamental attitudes that were how it was, and if I should…” should read “my fundamental attitudes. And if it were that way, I should…”]

5. Explain Wittgenstein’s remark: “For a large class of cases – though not for all – in which we employ the word ‘meaning’ it can be defined thus: the meaning of a word is its use in the language” (PI #43). How does this view of meaning differ from Wittgenstein’s view in the Tractatus? (Be sure to explain the Tractatus view of meaning sufficiently.) Explain Austin’s distinction between locutionary and illocutionary acts. How is Austin’s view of illocutionary acts related to Wittgenstein’s view of meaning in the Philosophical Investigations? One objection to Wittgenstein’s view (when taken literally) is that there are surely uses of words that

would not properly be called their “meaning”. Explain Austin’s distinction between illocutionary and perlocutionary speech acts. Does this distinction avoid the difficulty with Wittgenstein’s view of meaning (when taken literally)? Explain.

6. Wittgenstein’s discussion of understanding in the Philosophical Investigations, which begins in section 138, comes to a head in sections 201 and 202. Give a close reading of these two sections in the light of his preceding discussion. Be sure to explain the views of understanding he criticizes, how they lead to “our paradox”, and what this paradox consists in. Also be sure to explain the conclusions that Wittgenstein draws in these two sections.

7. Give a close reading of the crucial sections 240-242 of the Philosophical Investigations. Be sure to explain what Wittgenstein means when he speaks of agreement in the language that humans use, and what he means by saying that “[t]hat is not agreement in opinions but in form of life.” Also be sure to explain what he means by “agreement… in judgments”, and how this is different from agreement in definitions.

8. What does Wittgenstein mean by a “private language”, as discussed in section 243? How is such a language supposed to be set up, as discussed in section 258? Explain and evaluate his argument, beginning in section 243, that a private language is impossible. Be sure to discuss the “beetle in the box” argument at section 293. How does Wittgenstein think that we in fact learn words about sensations, especially in section 244?


Philosophy of Language: Wittgenstein Prof. Boedeker

Some loose ends in the Tractatus:

I. Statements involving numbers (6.2-6.241):

Wittgenstein follows Frege’s rejection of psychologistic theories of arithmetic. But he also rejects the abstract approach toward mathematics of the logicists Frege and Russell. He can do both because he rejects their common assumption: that an adequate understanding of arithmetic must involve a definition of the numbers, treating them as objects of some sort. For Wittgenstein, however, to undertake such a project fails to take Frege’s context principle adequately to heart. Instead, he favors a “bottom-up” approach: “Indeed in real life a [purely] mathematical proposition is never what we want. Rather, we make use of mathematical propositions only in inferences from propositions that do not belong to [pure] mathematics to others that likewise do not belong to [pure] mathematics. (In philosophy the question, ‘What do we actually use this word or this proposition for?’ repeatedly leads to valuable insights.)” (6.211)

Imagine a world with just three objects, a, b, and c. We can thus say things like “a is a frog”, “b is a frog,” “c is a frog”.

We can also say things that involve numbers like “there are exactly 2 frogs”, “there is at least 1 frog,” etc. – without using any distinct signs for the numbers. Note that such statements do not belong to mathematics, since they’re not about numbers, but about frogs!

Thus we get in Wittgenstein’s notation (where the same sign “x” always refers to the same object, and where the different signs “x” and “y” refer to different objects). And such statements can be expressed in a truth-table:

There are exactly 2 frogs (x)(y)(z)(Fx & Fy & Fz)

Fa, Fb, Fc |

T T T |F

T T F |T

T F T |T

T F F |F

F T T |T

F T F |F

F F T |F

F F F |F

There is at least 1 frog (x)Fx

Fa, Fb, Fc |

T T T |T

T T F |T

T F T |T

T F F |T

F T T |T

F T F |T

F F T |T

F F F |F

Now look at the method of “truth-grounds” at 5.11-5.133. And we see that all the truth-grounds of “there are exactly 2 frogs” (these rows are in bold) are also truth-grounds of “there is at least 1 frog”. Thus the former proposition entails the latter.

II. Tautologies need no justification:

A. Agrippa’s (ancient skeptic) trilemma: knowledge is impossible, since when I claim to know that p, I must be able to give a reason r that explains why p is true, but end up either

1. being dogmatic, i.e., merely asserting that p (e.g., Frege’s claim that the axioms of logic are “self-evident”);

2. getting into an infinite regress, i.e., p is true because r is true, r is true because s is true, etc. (e.g., Lewis Carroll’s Tortoise making Achilles make every assumption explicit); or

3. getting into a vicious circle, in which one of my reasons for p ends up being p itself.

B. Wittgenstein’s way out of the trilemma with respect to logical truth: If there are logical truths, then they are tautologies. But tautologies presuppose themselves, and are thus not propositions, but rather nonsense. Thus there are no logical truths, and no logical knowledge! “(For example, I know nothing about the weather when I know that it is either raining or not raining.)” (4.461).

The crucial point is that all propositions presuppose tautologies – but not just in order to be true (or false). Rather, they do in order to have sense at all. That a proposition presupposes a tautology in order to have sense is shown in its consisting of just these rows. E.g.,

p, q |

T T |T

T F |F

F T |F

F F |F

presupposes “(p&q)(p&q)(p&q)(p&q)” , which is a tautology. Thus Wittgenstein ultimately avoids Agrippa’s trilemma by pointing out that we cannot give reasons that justify our presupposing tautologies, since they are presupposed by all propositions in order to have sense. Thus we can’t even make sense without presuppositions!

If the skeptic asks why such tautologous presuppositions are true, Wittgenstein can simply point out that the skeptic presupposes in his very question that all propositions are either true or false, etc. – i.e., the very tautologies the skeptic claims to question! Thus skepticism about tautologies is self-refuting.

III. The saying/showing distinction: “What can be shown, cannot be said” (4.1212). Every truth-table expression of a proposition has presuppositions. Every proposition must be able to be logically analyzed so that its truth-table shows its truth-functional structure presupposing only non-propositional “nonsense”, i.e., things that cannot be stated. Such presuppositions, however, must “show themselves” to someone if they are to understand the truth-table. What must show itself is everything presupposed by a proposition at the final level of analysis.

IV. Ethics (6.42-6.43):Take an absolutist view of ethics, which consists in statements like:

“Necessarily, if x is murder, then x is not morally permissible”

Or, in symbols,

'(x)(Mx ' Px)

the truth-table of which is

Mx, Px |

T T |F

T F |T

F T |T

F F |T .

This truth-table shows the necessity of the ethical statement only if we eliminate the first row, which should be impossible. But in eliminating this row, we have presupposed that it’s impossible for something to be a murder and also morally permissible. Thus the statement can display its modal status in a truth-table only by presupposing itself; it is thus not a proposition, and is instead nonsense.

V. Analysis using Russell’s theory of definite descriptions: “[1] Every statement about complexes can be resolved [2] into a statement about their constituents and [3] into the propositions that describe the complexes completely” (2.0201).

[1] is the statement at the surface level (of ordinary language);

[2] is the statement at the final level of logical analysis, in which all singular terms are simple names that just mean the object they refer to.

[3] is the definition that allows us to analyze the statement at the surface level into the final level.

Take a proposition, such as “The King of France in 2000 is not a King of France in 2000”, that contains a definite description. Using the following scheme of abbreviation:

k: the King of France in 2000

Kx: x is a King of France in 2000 ,

the truth-table for the proposition would be:

Kk Kk


F T F .

In order to rule out the second row as an impossibility, the truth-table display of the proposition presupposes “Kk”, which is clearly a proposition if “Kk” is. And this would violate Wittgenstein’s logico-philosophical assumption given in III E 7 above.

To remedy this situation, we can subject “Kk” to logical analysis, with the help of the following contextual definition of “k”:

Φk =Def. (x)(y)(Kx & Ky & Φx)

The analyzed proposition thus becomes (substituting “K” for “Φ” in the definition):
(x)(y)(Kx & Ky & Kx) ,

Which is clearly a contradiction, since it contains “Kx” and “Kx”.

Thus [1] is “The King of France in 2000 is not a King of France in 2000”,

[2] is “(x)(y)(Kx & Ky & Kx)”, and

[3] is “Φk =Def. (x)(y)(Kx & Ky & Φx)”  

Community content is available under CC-BY-SA unless otherwise noted.